REVISTA BOLIVIANA DE QUÍMICA ISSN 0250-5460 Rev. Bol. Quim. Paper edition ISSN 2078-3949 Rev. boliv. quim. Electronic edition Brij B. Tewari et al. REQ Vol. 36, No.1, pp. 19-39, 2019

Received 03 19 2019 36(1); Jan./Apr. 2019 Accepted 04 25 2019 Published 04 30 2019; DOI: 10.34098/2078-3949.36.1.3

CRITICAL REVIEWS ON STABILITY AND PHOTOSENSITIZER POTENTIAL OF METAL FERROCYANIDES: A POSSIBLE PREBIOTIC MINERAL PART-III

REVISIONES CRÍTICAS DE ESTABILIDAD Y DE POTENCIAL DE FOTOSENSIBILIZADOR DE FERROCIANUROS METÁLICOS: UN POSIBLE MINERAL PREBIÓTICO PARTE III

Received 03 19 2019 Accepted 04 25 2019 Published 04 30 2019
Vol. 36, No.1, pp. 19-39, Ene./Abr. 2019 Revista Boliviana de Química
36(1), 19-39, Jan./Apr. 2019 Bolivian Journal of Chemistry DOI: 10.34098/2078-3949.36.1.3
Revista Boliviana de Química
Vol. 36, No. I 2019, Abril 30 CREACUS QUMCAS

Full original article

Peer-reviewed

Brij B. Tewari^{1,*}, D. Usmanali¹, Glen A. Soobramani¹, Sharlene Roberts¹, Mancy Abbas¹, Tricia Grant¹, Ashish K. Tiwari², Shivanand Singh¹, Marc V. Boodhoo³

¹Department of Chemistry, Faculty of Natural Sciences, University of Guyana, P.O. Box 101110 Georgetown, Guyana

²Indian Institute of Technology (IIT) Kanpur, Kanpur, Uttar Pradesh -208016, India

³Department of Agriculture, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, T6G2P5, Canada

Keywords: Metal ferrocyanides, Stability, Oxidizer, Photosensitizer, Prebiotic mineral.

Palabras clave: Ferrocianuros metálicos, Estabilidad, Oxidante, Fotosensibilizador, Prebiótico mineral.

ABSTRACT

Copper, lanthanum, mercury, molybdenum, silver, titanium, and zinc ferrocyanides were synthesized and characterized by elemental analysis and spectral studies. The stability of synthesized metal ferrocyanides were recorded in heat (various temperature), various concentrations of acids (HCl, H₂SO₄, HNO₃, CH₃ COOH) various concentrations of bases (NaOH, KOH, NH₄OH), and in sea and tap water. All stabilities were recorded at room and boiling temperature. Stability of synthesized metal ferrocyanides were also recorded in presence of visible and ultraviolet radiation. Oxidizing and photosensitizing potential of synthesized metal ferrocyanides were tested using potassium iodide and freshly prepared starch solution indicated copper ferrocyanide as possible strong oxidizer and photosensitizer. Molybdenum, mercury and tungsten ferrocyanides were found to act as weak oxidizer and photosensitizer. Lanthanum and zinc ferrocyanide did not show any oxidizing and photosensitizing potential.

*Corresponding author: <a href="mailto:bright:brigh

RESUMEN

Los ferrocianuros de cobre, lantano, mercurio, molibdeno, plata, titanio y zinc se sintetizaron y caracterizaron mediante análisis elemental y estudios espectrales. La estabilidad de los ferrocianuros metálicos sintetizados se registró en calor (varias temperaturas), varias concentraciones de ácidos (HCl, H₂SO₄, HNO₃, CH₃ COOH) varias concentraciones de bases (NaOH, KOH, NH4OH), y en agua de mar y de grifo. Todas las estabilidades se registraron a temperatura ambiente y de ebullición. La estabilidad de los ferrocianuros metálicos sintetizados también se registró en presencia de radiación visible y ultravioleta. El potencial oxidante y fotosensibilizante de los ferrocianuros metálicos sintetizados se probó con yoduro de potasio y la solución de almidón recién preparada indicó que el ferrocianuro de cobre es un posible oxidante fuerte y fotosensibilizador. Se descubrió que los ferrocianuros de molibdeno, mercurio y tungsteno actúan como oxidante débil y fotosensibilizador. El lantano y el ferrocianuro de zinc no mostraron ningún potencial oxidante y fotosensibilizante.

INTRODUCTION

Environment conditions on early Earth were important for both, the origin and the early evolution of life. Two variables are of particular significance (i) the atmospheric redox state, and (ii) the mean surface temperature. Most recent models of Earth prebiotic atmosphere [1, 2] suggested that this was weakly reduced, with N₂ and CO₂, predominating over NH₃ and CH₄. Nucleic acid bases are part of important compounds in biological systems. Most of the bases are readily formed in prebiotic conditions. Their synthesis and stability in environmental conditions is of paramount importance in chemical evolution [3]. Clay minerals considered the most likely inorganic material to promote organic reactions at the interface of the hydrosphere and lithosphere [4]. The relevancy of clay minerals to the origin of life is due to their ancient origin, wide distribution and especially for their physico-chemical properties [5]. Clays are important because of their strong affinity for organic compounds [6]. Certain montmorillonites catalyze the formation of RNA oligomers that contain up to fifty (50) monomers units determined by MALDI mass spectrometry and gel electrophoresis [7, 8]. Montmorillonite is a catalyst that favours sequence selectivity and phosphodiester bond selectivity [9].

Primitive atmosphere was anoxygenic and reaction potential of atmosphere was not high enough, hence metals like iron, copper, mercury, molybdenum, zinc etc. were in the form of their lower oxidation states. During the course of chemical evolution, cyanide ions were abundant in nature. Cyanide ion is smaller in size and is considered as a strong ligand due to the presence of triple bond. It shows basic ambidentate characteristics and form a variety of complexes with transition metal ions [10, 11]. Consequently, several insoluble metal ferrocyanides of general formula M_2 [Fe (CN)₆].X H₂ O where M= Fe, Cu, Hg, Mo, Zn, etc., could have been formed. It is well established that metal ferrocyanides act as adsorbents [12-14], ion exchangers [15-17] and photosensitizers [18,19]. It is also suggested that the interaction of organic molecules with metal ferrocyanides take place through the coordination between the exchangeable outer metal ion and the available adsorption site of organic molecules.

A search of literature indicated some reports available on synthesis of metal-cyano complexes and very few reports available on stability and photosensitizing activity of these complexes. In view of this, attempt was made to study stability and photosensitizing activity of copper, lanthanum, mercury, molybdenum, silver, titanium, tungsten and zinc ferrocyanides. In addition, the present work describes a critical reviews on stability and photosensitizer potential of copper, lanthanum, silver, titanium, tungsten and zinc ferrocyanides.

RESULTS AND DISCUSSION

Elemental analysis of metal ferrocyanides

The percentage compositions of metals in metal ferrocyanides are given in Table 1. The percentage of metals (copper, - lanthanum, mercury, molybdenum, silver, titanium, tungsten and zinc) are found higher in comparison to iron in all metal ferrocyanides studied. The found percentage of carbon was maximum and minimum in zinc and lanthanum ferrocyanides, respectively. The found percentage of hydrogen was maximum and minimum in titanium and mercury ferrocyanides, respectively. It is also clear from Table 1 that percentage of nitrogen was maximum and

minimum in zinc and molybdenum ferrocyanides, respectively. The greater the percentage of hydrogen the more water molecules are expected to be attached to metal ferrocyanides.

Spectral studies of metal ferrocyanides

The infrared special data of metal ferrocyanides are given in Table 2. It is observed from Table 2 that water molecules/OH groups and metal-nitrogen band showed highest and lowest absorption frequencies, respectively. The HOH bending, cyanide and Fe-C stretching frequencies were observed around 1600 cm-1, 2000 cm-1 and 600 cm-1, respectively. It is also clear from Table 2 that the found frequencies for metal-nitrogen bands were maximum and minimum in titanium and copper ferrocyanides, respectively.

Effect of heat on the stability of metal ferrocyanides

It is clear from Table 3 that copper, lanthanum, mercury, molybdenum, silver, titanium, and zinc ferrocyanides are found to be stable at 100° C, while those of tungsten and titanium ferrocyanides are found to be unstable at 100° C.

Stability of metal ferrocyanides in various concentrations of acids at room temperature and at boilling temperature

It is observed from Table 4 that molybdenum, titanium, silver, and zinc ferrocyanides are insoluble in various concentrations of hydrochloric acid at room temperature with no colour change of particles in silver, titanium and zinc ferrocyanides and with colour change of particles in molybdenum ferrocyanide. Lanthanum and mercury ferrocyanides are slightly soluble in various concentrations of hydrochloric acid at room temperature with colour change of particles. Copper and tungsten ferrocyanides are slightly soluble at high concentration of hydrochloric acid at room temperature with colour change of particles, while insoluble at lower concentration of hydrochloric acid at room temperature with no colour change of particles.

It is clear from Table 5 that copper and zinc ferrocyanides are insoluble in various concentrations of boilling hydrochloric acid with colour change of particles. Silver and titanium ferrocyanides are insoluble in various concentrations of boilling hydrochloric acid with no colour change of particles. Mercury ferrocyanides is soluble at all concentrations of boilling hydrochloric acid. Lanthanum, molybdenum and tungsten ferrocyanides are slightly soluble at high concentrations of boilling hydrochloric acid and insoluble at low concentrations of boilling hydrochloric acid and insoluble at low concentrations of boilling hydrochloric.

Table 6 shows that copper, zinc, silver, titanium, molybdenum, tungsten ferrocyanides are insoluble in various concentrations of sulfuric acid at room temperature with no colour change of particles. Lanthanum ferrocyanide is soluble in various concentrations of sulfuric acid at room temperature with colour of solution blue and clear at high and low concentrations, respectively.

It is observed from Table 7 that silver, titanium, molybdenum, tungsten ferrocyanides are insoluble in various concentrations of sulphuric acid at boilling temperature with no change in colour of particles. Copper and zinc ferrocyanides are insoluble in various concentrations of sulphuric acid at boilling temperature with colour change of the particles. Mercury ferrocyanide is soluble at all concentrations of sulphuric acid at boilling temperature with colour of solution change blue. Lanthanum ferrocyanide is soluble at high concentration of sulphuric acid at boilling temperature with colour of solution change to blue, while slightly soluble to low concentration of sulphuric acid at boilling temperature with colour change of solution light blue.

It is clear from Table 8 that copper, zinc, silver, titanium, molybdenum and tungsten ferrocyanides are insoluble in various concentrations of nitric acid at room temperature with no change in colour of the particles. Lanthanum and mercury ferrocyanides are soluble and slightly soluble in various concentrations of nitric acid at room temperature with colour change of solution to green in both cases.

Table 9 shows that copper, zinc, molybdenum and tungsten ferrocyanides are insoluble in various concentrations of nitric acid at boilling temperature with colour change of particles in case of copper and zinc ferrocyanides, while colour of particles did not change in case of molybdenum and tungsten ferrocyanides. Lanthanum and mercury ferrocyanide are soluble in various concentrations of nitric acid at boilling temperature.

It is observed from Table 10 that mercury, tungsten, copper and zinc ferrocyanides are insoluble in various concentrations of acetic acid at room temperature with no change in colour of particles. Silver, titanium, lanthanum

REVISTA BOLIVIANA DE QUÍMICA ISSN 0250-5460 Rev. Bol. Quim. Paper edition ISSN 2078-3949 Rev. boliv. quim. Electronic edition Brij B. Tewari et al. REQ Vol. 36, No.1, pp. 19-39, 2019

Received 03 19 2019 36(1); Jan./Apr. 2019 Accepted 04 25 2019 Published 04 30 2019; DOI: 10.34098/2078-3949.36.1.3

and molybdenum ferrocyanides are insoluble in various concentrations of acetic acid at room temperature with colour change of the particles.

It is clear from Table 11 that lanthanum, copper and zinc, molybdenum ferrocyanides are insoluble in various concentrations of boilling acetic acid with no change in colour of particles. Titanium ferrocyanide is slightly soluble in various concentrations of boilling acetic acid with colour change in particles. Mercury, silver and tungsten ferrocyanides are insoluble in various concentrations of boilling acetic acid with colour change in colour of particles. The colour of particles in various acids at room and boilling temperature is probable due to electronic transition within molecules of metal ferrocyanides.

Stability of metal ferrocyanides in various concentrations of bases at room and boilling temperature.

Table 12 show that copper, tungsten, silver, molybdenum, mercury ferrocyanides are insoluble in various concentrations of sodium hydroxide at room temperature with no change in the original particles. Titanium ferrocyanide is insoluble in various concentrations of sodium hydroxide with no colour change in the original particles. Zinc ferrocyanide is soluble in high concentration and insoluble at low concentration of sodium hydroxide at room temperature. The lanthanum ferrocyanide is slightly soluble at all concentrations of sodium hydroxide at room temperature with colour change in the particles.

It is observed from Table 13 that copper and silver ferrocyanides are insoluble in various concentrations of boilling sodium hydroxide with colour change in the original particles. Titanium, tungsten and lanthanum ferrocyanides is insoluble in various concentrations of sodium hydroxide with no colour change in the original particles. Zinc and molybdenum ferrocyanides are soluble in various concentrations of sodium hydroxide at boilling temperature. Mercury ferrocyanides soluble in high concentration and insoluble at low concentration of boilling sodium hydroxide.

It is clear from Table 14 that copper, mercury, molybdenum and tungsten ferrocyanides are insoluble in various concentrations of potassium hydroxide at room temperature with change in colour of original particles. Zinc ferrocyanide is soluble in all concentrations of potassium hydroxide at room temperature. Silver, titanium and lanthanum ferrocyanides are insoluble in various concentrations of potassium hydroxide at room temperature with no colour change in original particles.

Table 15 showed that copper, tungsten, mercury, molybdenum and tungsten ferrocyanides are insoluble in boilling potassium hydroxide with change in colour of the original particles. Zinc ferrocyanide is soluble in various concentrations of boilling potassium hydroxide. Titanium and lanthanum ferrocyanides are insoluble in various concentrations of boilling potassium hydroxide with no change in colour of original particles.

It is observed from Table 16 that copper and titanium ferrocyanides are insoluble in various concentrations of ammonium hydroxide at room temperature with no colour change in particles. Molybdenum and zinc ferrocyanides are soluble in various concentrations of ammonium hydroxide at room temperature. Silver, tungsten and lanthanum ferrocyanides are insoluble in various concentrations of ammonium hydroxide at room temperature with no change in colour. Mercury ferrocyanide is soluble in high concentrations of ammonium hydroxide and insoluble at low concentration of ammonium hydroxide at room temperature.

It is observed from Table 17 that copper and titanium ferrocyanides are insoluble in various concentrations of boilling ammonium hydroxide with colour change in original particles. Molybdenum and zinc ferrocyanides are soluble in various concentrations of ammonium hydroxide at boilling temperature. Lanthanum and tungsten ferrocyanides are insoluble in various concentrations of boilling ammonium hydroxide with colour change in original particles. Silver and mercury ferrocyanide are partially soluble in high concentration of boilling ammonium hydroxide and insoluble at low concentrations of boilling ammonium hydroxide. The colour change of metal ferrocyanides in various bases at room and boilling temperature is probably due to electronic transition within molecules of metal ferrocyanides.

Stability of metal ferrocyanides in tap water and sea water at room and boilling temperature

Table 18 showed that all eight copper, lanthanum, mercury, molybdenum, silver, titanium, tungsten and zinc ferrocyanides are found to be insoluble and stable in tap water and sea water at room and boiling temperature.

Effects of visible light on the stability of metal ferrocyanides

Received 03 19 2019 36(1); Jan./Apr. 2019 Accepted 04 25 2019 Published 04 30 2019; DOI: 10.34098/2078-3949.36.1.

It is observed from Table 19 that tungsten, lanthanum, molybdenum and mercury ferrocyanides are stable to visible light until the 48 hours of radiations. Copper and silver ferrocyanides are unstable to visible light until the 12 hours of irradiation, it is also clear from Table 19 that zinc and titanium ferrocyanides are found stable to visible light 24 hours of irradiation.

Effects of ultraviolet light on the stability of metal ferrocyanides

It is clear from Table 20 that lanthanum, mercury and molybdenum ferrocyanides are stable to ultraviolet light until the 48 hours of irradiations. Copper ferrocyanide is stable to ultraviolet light until the 24 hours of irradiation. Zinc, tungsten and titanium ferrocyanides are found to be stable to ultraviolet light 12 hours of irradiation. It is also clear from Table 20 that silver ferrocyanide unstable to ultraviolet light at 12 hours of irradiations.

Test of oxidizing and photosensitizing activity of metal ferrocyanides

Test on oxidizing and photosensitizing potential of copper, zinc, molybdenum, mercury, tungsten lanthanum ferrocyanides in potassium iodide and freshly prepared starch solution indicated copper ferrocyanide as a strong oxidizer and photosensitizer. Lanthanum and zinc ferrocyanides did not show any oxidizing and photosensitizing potential. Molybdenum, mercury and tungsten ferrocyanides found to act as weak oxidizer and photosensitizer during the course of chemical evolution on primitive Earth.

CONCLUDING REMARKS

- 1. The copper, lanthanum, mercury, molybdenum, silver, titanium, tungsten and zinc ferrocyanides are found to be stable to heat at 100°C of temperature.
- 2. The molybdenum, titanium, silver and zinc ferrocyanides are insoluble in various concentrations of hydrochloric acid at room temperature with no change in colour of original particles.
- 3. The copper, zinc, silver, titanium, molybdenum, tungsten, ferrocyanides are insoluble in various concentrations of sulphuric and nitric acids at room temperature with no change in colour particles.
- 4. Lanthanum ferrocyanide found to be more unstable in various concentrations of acids at room and boilling temperature in comparison to other metal ferrocyanides studied.
- 5. Most of the metal ferrocyanides are more stable to room temperature at various concentrations of acids and bases.
- 6. Zinc ferrocyanide is found to be soluble in various concentrations of bases (NaOH, KOH, NH₄OH) at room and boilling temperature.
- 7. Titanium ferrocyanide is found to be more stable in various concentrations of bases (NaOH, KOH, NH₄OH) at room and boilling temperature with no change in colour of original particles.
- 8. Copper, mercury, molybdenum tungsten ferrocyanide is found to be insoluble in various concentrations of bases (NaOH, KOH, NH₄OH) at room temperature with change in colour of original particles.
- 9. Metal ferrocyanides seems to be more stable in various concentrations of acids at room and boilling temperature in comparison to bases.
- 10. All eight metal ferrocyanides (copper, lanthanum, mercury, molybdenum, silver, titanium, tungsten and zinc) are found to be insoluble and stable in tap water and sea water at room and boilling temperature.
- 11. Lanthanum, mercury and molybdenum ferrocyanides are stable until the 48 hours of visible and ultraviolet light radiations.
- 12. Zinc and titanium ferrocyanides are found to be stable until the 24 hours of visible light radiation while they're stable until the 12 hours in ultraviolet light radiations.
- 13. Silver ferrocyanide is found to be unstable in both visible and ultraviolet light on 12 hours of radiations.
- 14. Copper ferrocyanide is found to have high oxidizing and photosensitizing potential whereas molybdenum, mercury and tungsten ferrocyanides found to have weak oxidizer and photosensitizing potential during the course of chemical evolution on primitive Earth.
- 15. It is also concluded from present study that double metal ferrocyanides are insoluble and stable during the course of chemical evolution on primitive Earth and played a significant role in condensation of precursors of early life in primeval seas.

EXPERIMENTAL

Chemicals

Potassium ferrocyanide, copper (II) chloride, lanthanum chloride, mercury (II) chloride, sodium molylidate, silver nitrate, titanium tetrachloride, sodium tungsten, zinc chloride were obtained from British Drug House (BDH), Poole, England. All chemical used were of AnalaR grade and used as such without any further purification. Solutions were prepared in doubly distilled water.

Synthesis of metal ferrocyanides

Copper, zinc, silver, mercury, lanthanum ferrocyanides were prepared by Kourim's method [20] by adding potassium ferrocyanide (167 m L, 0.1 M) slowly to metal chloride (500 m L; 0.1 M) with constant stirring. The reaction mixture was heated on a water bath for 2-3 h and then cured for 24 h. The precipitate was washed and dried at 60° C. The dried product was ground and sieved at 125 μ M BSS mesh size. In case of silver ferrocyanide all procedure were carried out in the dark.

The best condition for the preparation of titanium ferrocyanide involves variation in the mole ratio of titanium to hexacyanoferrate (II), which vary between10 to 1 and 1 to 10, respectively. For this experiment we used a 0.5 M solution of titanium tetrachloride in 2.0 M aqueous hydrochloric acid and 0.34 M solution of hexacyanoiron (II) acid [21]. The solution of hexacyanoiron (II) acid is won by pouring a solution of potassium hexacyanoferrate (II) over a Dower-50-exchanger and then poured into the 2.0 M HCl / TiCl₄ solution. The filling material from the exchanger is centrifused out after 24 h and dried over phosphorus pentaoxide and potassium hydroxide in a vacuum desiccators. The dried product was washed with water free from chloride ion and then dried again in the vacuum desiccators. The dried product was ground and sieved at 125 μ M BSS mesh size.

Molybdenum hexacyanoferrate was isolated [22, 23] by adding ethyl alcohol to a mixture containing 14 m L of 0.1 M molybdic acid and 20 m L of 0.1 M potassium hexacyanoferrate solution. The precipitate was filtered and washed with alcoholic water and dried for 48 h. The dried compound was ground and sieved to 125 μ M BSS mesh size.

Tungsten ferrocyanide was prepared by adding potassium ferrocyanide (0.1 M, 200 m L) sodium tungstate (0.1 M, 400 m L) and HCl (1.0 M, 10 m L) with constant stirring [24]. The reaction mixture was then heated in a boiling water bath for 3 h. the product was left at room temperature for 24 h. The precipitate was then filtered under vacuum, washed with distilled water and dried in an oven at 60° C. The dried product was ground and sieved to 125 μ M, BSS mesh size.

Characterization of metal ferrocyanides

Copper, lanthanum, mercury, molybdenum, silver, titanium, tungsten and zinc ferrocyanides are dark rust brown, white, blue, green, light blue, forest green, dark green and white, respectively. The double metal ferrocyanides are amorphous insoluble solid and showed no X-ray pattern. The metal ferrocyanides are characterized on the basis of elemental and spectral studies. The percentage composition of metals was determined by IL-751 atomic absorption spectrophotometer [25]. Carbon, hydrogen and nitrogen analysis were carried out by CEST-118, CHN analyzer. Percentage composition of elements in the metal ferrocyanides are given in Table 1.

Infrared spectra of metal hexacyanoferrate (II) complexes were recorded in KBr disc on Beckman IR-20 spectrophotometer (Table 2). All eight metal ferrocyanides show a broad peak at $3600 - 3800 \text{ cm}^{-1}$ is characteristic of water molecule and OH groups. A peak at around 1590-1625 cm⁻¹ is due to HOH bending [25], two sharp peaks, one at around 2020 cm⁻¹ and the other at around 600 cm⁻¹ in all eight spectra of complexes are characteristic frequencies of cyanide and Fe-C stretching, respectively [26]. Another sharp band at 450-500 cm⁻¹ in all eight metal ferrocyanides probably shows the presence of metal-nitrogen bond thus indicating a certain degree of polymerization in the products [27,28].

Stability study on metal ferrocyanides

Effect of heat on the stability of metal ferrocyanides

A 20 mg of each metal ferrocyanides was placed in a petri dish. The petri dishes were then placed in the air oven for 6 hours at 100° C. This process was repeated at 150° C, 200° C, and 250° C to demonstrate the effect of heat on the various metal ferrocyanides. The colour of metal ferrocyanides at various was carried temperatures was observed (Table 3). All procedure for silver ferrocyanide was carried out in the dark.

Stability of metal ferrocyanides in various concentrations of acids at room temperature and at boilling temperature

The metal ferrocyanides (20 mg) were placed in the test tubes containing 10 mL of each 2.0 M, 1.0 M, 0.5 M, 0.2 M and 0.1 M acids (hydrochloric acid, sulphuric acid, nitric acid and acetic acid). The mixture was agitated for 20 minutes at room temperature and observation for any change in colour of metal ferrocyanides were recorded (Tables 4, 6, 8. 10). The same reaction mixture boilling on a Bunsen flame for 20 minutes and any change in colour of metal ferrocyanides were recorded (Tables 5, 7, 9, 11). This process was repeated for each metal ferrocyanides. The colour change for ferrocyanides metallic was recorded. All procedures for silver ferrocyanide were carried out in the dark.

Stability of metal ferrocyanides in various concentrations of bases at room temperature and at boilling temperature

The metal ferrocyanides (20 mg) were placed in test tubes containing 10 mL of each 2.0 M, 1.0 M, 0.5 M, 0.2 M and 0.1 M bases (sodium hydroxide, potassium hydroxide, ammonium hydroxide). The mixture was agitated for 20 minutes at room temperature and observation for any change in color of metal ferrocyanides was recorded (Tables 12, 14, 16). The same reaction mixture boiled on a Bunsen flame for 20 minutes and any change in color of metal ferrocyanides was recorded (Tables 13, 15, 17). This process was repeated for each ferrocyanide metallic. The color change for metal ferrocyanides was recorded. All procedures for silver ferrocyanide were carried out in the dark.

Stability of metal ferrocyanides in tap water and sea water at room temperature and at boiling temperature

The metal ferrocyanides (20 mg) were placed in the test tubes containing 10 mL tap water and sea water. The mixture was agitated for 1h and observation for any change in colour of metal ferrocyanide were recorded (Table 18). The same reaction mixture boilling on Bunsen flame for 20 minutes and any change in colour of ferrocyanides were recorded (Table 18). All procedures for silver ferrocyanide was carried out in the dark.

Effect of light (UV/Vis) on the stability of metal ferrocyanides

A 20 mg of each metal ferrocyanides were placed in a dry petri dish and the original colour was recorded. A 250 W visible lamp was kept vertically above the sample at a distance of 28 cm. The observations for any change in colour of metal ferrocyanides were recorded at 12, 24, 36 and 48 hours (Table 19). The same experiment was repeated using a long wave (300 - 380 nm) ultraviolet lamp. The observations of any change in colour of metal ferrocyanides were recorded (Table 20).

Test on oxidizing and photosensitizing potential of metal ferrocyanides

The oxidizing and photosensitizing activity of copper, lanthanum, mercury molybdenum, tungsten and zinc ferrocyanides were compared by potassium iodide and freshly prepared starch solution. Oxidation of iodide to iodine in presence of starch gives blue colour. One drop of freshly prepared 2.0 % starch solution was added into test tubes (length =10 cm; internal diameter = 1.30 cm) containing 10 mL of 0.1 M potassium iodide solution. A 25 mg of potassium ferrocyanide were added into each test tube and agitated, observation for any decolourization of blue color and potassium iodide and starch solution were recorded. The same experiment was repeated using a 250 W visible lamp and a long wave UV lamp, which was kept vertically above the test tubes at a distance of 15.0 cm. Photosensitizer will decolorize the blue color of potassium iodide and starch solution in the presence of visible and ultraviolet light. The oxidizers will decolorize the blue color of potassium iodide and starch solution in the absence of light.

ISSN 0250-5460 Rev. Bol. Quim. Paper edition ISSN 2078-3949 Rev. boliv. quim. Electronic edition Brij B. Tewari et al. REQ Vol. 36, No.1, pp. 19-39, 2019 Received 03 19 2019 36(1); Jan./Apr. 2019 Accepted 04 25 2019 Published 04 30 2019; DOI: 10.34098/2078-3949.36.1.3

Table 1: Elemental analysis of metal ferrocyanides

Metal		Percentage (%) found			-	
Ferrocyanid	les*	Metal	Iron	Carbon	Hydrogen	Nitrogen
CuFc		28.30	12.90	16.03	2.56	18.32
LaFc		35.20	7.10	9.40	3.90	11.90
HgFc		54.90	10.50	14.00	0.60	14.35
MoFc		39.80	16.60	10.73	1.86	11.72
AgFc		40.22	8.75	11.47	2.75	13.77
TiFc		25.35	11.95	15.62	3.17	18.25
WFc		52.71	7.27	9.31	1.67	12.07
ZnFc		29.80	15.50	18.80	1.55	19.89
HgFc = M AgFc = S	Copper ferrocyanide Mercury ferrocyanide Silver ferrocyanide Tungsten ferrocyanide		LaFc = MoFc = TiFc = ZnFc =	Lanthanum ferrocyanide Molybdenum ferrocyanide Titanium ferrocyanide Zinc ferrocyanide		

Table 2: Infrared spectra data of metal ferrocyanides

Absorption frequency (cm ⁻¹)					
Metal	H ₂ O molecule	HOH	C=N	Fe-C	Metal-N*
ferrocyanides	/OH group	bending	Streching		
CuFc	3600	1590	2090	6 00	450
LaFc	3600	1590	2000	600	500
HgFc	3600	1620	2000	600	490
MoFc	3600	1600	1990	620	500
AgFc	3800	1600	2010	600	490
TiFc	3800	1615	2020	600	510
WFc	3510	1600	2000	620	490
ZnFc	3650	1620	2080	600	475

*Metal-nitrogen band show degree of polymerization

Table 3: Effect of heat on the stability of metal ferrocyanides

MFcs	Original colour	100° C	150° C	200° C	250° C
CuFc	Dark Rust Brown	No change	Black	Black	Black
LaFc HgFc MoFc	White Blue Green	No change No change No change	Light brown No change Greenish Brown	Brown Brown Brown	Brown Deep brown Brown black
AgFc	Light blue	Light blue	Light blue	Dark blue	Blackish blue
TiFc	Forest green	Change forest green to light black	Change forest green to light black	Change forest green to black	Change forest green to black
WFc	Dark green	Change dark green to black	Change dark green to black	Change dark green to black	Change dark green to black
ZnFc	White	No change	Light brown	Light brown	Dark brown

MFcs = metal ferrocyanides

Amount of metal ferrocyanides = 20 mg Time: 6 hours

Table 4: Stability of metal ferrocyanides in hydrochloric acid at room temperature

MFcs (OC)	2.0 M	1.0 M	0.5 M	0.2 M	0.1 M	
	Downloadabl	e from: Revista Boliviana	26	de Química. Volumen	n 36 Nº1. Año 2019	
http://www.bolivianchemistryjournal.org, http://www.scribd.com/bolivianjournalofchemistry						

ISSN 0250-5460 Rev. Bol. Quim. Paper edition ISSN 2078-3949 Rev. boliv. quim. Electronic edition Brij B. Tewari et al. REQ Vol. 36, No.1, pp. 19-39, 2019

CuFc (Dark rust brown)	Slightly red brown Particles changed to light green	Insoluble no change	Insoluble no change	Insoluble no change	Insoluble no change
LaFc (White)	Slightly soluble white particles turn blue				
HgFc (Blue)	Slightly soluble blue particles turned deep blue	Slightly soluble blue particles turned deep blue	Slightly soluble blue particles turned deep blue	Slightly soluble blue particles turned deep blue	Slightly soluble white particles turned deep blue
MoFc (Green)	Insoluble green particles turned to deeper green	Insoluble green particles turned to deeper green	soluble green particles turned to deeper green	soluble green particles turned to deeper green	soluble green particles turned to deep green
AgFc (Light blue)	Insoluble light blue (no change)				
TiFc (Forest green)	Insoluble bottle green (no change)	Insoluble bottle green (no change)	Insoluble bottle green (no change)	Insoluble forest green (no change)	Insoluble forest green (no change)
WFc (Dark green)	Slightly Soluble dark green to black	Insoluble dark green	Insoluble dark green	Insoluble dark green	Insoluble dark green
ZnFc (White)	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble

 $\begin{array}{l} OC = Original \ colour \ of \ metal \ ferrocyanides \\ Time: \ 20 \ minutes \\ Room \ temperature = \ 31.0^{o} \ C \end{array}$

Amount of metal ferrocyanides = 20 mgVolume of hydrochloric acids = 10 mL

Table 5: Stability of men	al ferrocyanide:	s in hydrochloric aci	d at boiling temperature

MFcs (OC)	2.0 M	1.0 M	0.5 M	0.2 M	0.1 M
CuFc (Dark rust brown)	Insoluble dark rust brown particles turn black	Insoluble dark rust brown particles turn black	Insoluble dark rust brown particles turn black	Insoluble dark rust brown particles turn black	Insoluble dark rust brown particles turn black
LaFc (White)	Slightly soluble solution turn blue white powder became blue	Slightly soluble solution faint blues white powder because blue	Insoluble supernatant clear white powder became blue	Insoluble supernatant clear white powder became blue	Insoluble supernatant clear white powder became blue
HgFc (Blue)	Soluble solution turned blue	Soluble solution turned blue	Soluble solution turned blue	Soluble solution turned blue	Soluble solution turned blue

Downloadable from: Revista Boliviana 27 de Química. Volumen 36 Nº1. Año 2019

ISSN 0250-5460 Rev. Bol. Quim. Paper edition ISSN 2078-3949 Rev. boliv. quim. Electronic edition Brij B. Tewari et al. REQ Vol. 36, No.1, pp. 19-39, 2019 Received 03 19 2019 36(1); Jan./Apr. 2019 Accepted 04 25 2019 Published 04 30 2019; DOI: 10.34098/2078-3949.36.1.3

MoFc (Green)	Slightly soluble	Slightly soluble	Insoluble green particles did not change	Insoluble green particles did not change	Insoluble green particles did not change
AgFc	Insoluble	Insoluble	Insoluble	Insoluble I	nsoluble
(Light blue)	blue (no change)	blue (no change)	blue (no change)	blue (no change)	blue (no change)
TiFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
(Forest green) WFc	bottle green (no change)	bottle green (no change)	bottle green (no change)	forest green (no change)	forest green (no change)
(Dark green)	Slightly Soluble dark green particles change to black	Slightly Soluble dark green particles change to black	Insoluble particles remains dark green	Insoluble particles remains dark green	Insoluble particles remains dark green
ZnFc	C	C			
(White)	Insoluble white Particles turn light green	Insoluble white particles turn light green	Insoluble white particles turn light green	Insoluble white particles turn light green	Insoluble white particles turn light green

OC = Original colour of metal ferrocyanides Time: 20 minutes

Amount of metal ferrocyanides = 20 mg Volume of hydrochloric acids = 10 mL

Room temperature = 31.0° C

Table 6: Stability of metal ferrocyanides in sulphuric acid at room temperature

MFcs (OC)	2.0 M	1.0 M	0.5 M	0.2 M	0.1 M
CuFc (Dark rust brown)	Insoluble dark rust brown Particles did not change black	Insoluble dark rust brown Particles did not change			
LaFc (White)	Soluble solution turned blue	Soluble solution faintly blues	Soluble solution clear	Soluble solution clear	Soluble solution clear
HgFc (Blue)	Soluble solution turned blue	Soluble solution turned blue	Soluble solution turned blue	Soluble solution turned blue	Soluble solution turned blue
MoFc (Green)	Insoluble green powder did not change supernatant clear	Insoluble green powder did not change supernatant clear	Insoluble green powder did not change supernatant clear	Insoluble green powder did not change supernatant clear	Insoluble green powder did not change supernatant clear
AgFc (Light blue)	Insoluble blue (no change)	Insoluble blue (no change)	Insoluble blue (no change)	Insoluble blue (no change)	Insoluble blue (no change)
TiFc (Forest green)	Insoluble forest green (no change)	Insoluble forest green (no change)	Insoluble forest green (no change)	Insoluble forest green (no change)	Insoluble forest green (no change)
WFc (Dark green)	Insoluble particles remains dark greendark gre	Insoluble particles remains een dark gre	Insoluble particles remains en dark gre	Insoluble particles remains een dark gre	Insoluble particles remains een

28

ISSN 0250-5460 Rev. Bol. Quim. Paper edition ISSN 2078-3949 Rev. boliv. quim. Electronic edition Brij B. Tewari et al. REQ Vol. 36, No.1, pp. 19-39, 2019 ZnEc

Received 03 19 2019 36(1); Jan./Apr. 2019 Accepted 04 25 2019 Published 04 30 2019; DOI: 10.34098/2078-3949.36.1.3

white	white	white	white	white	
Particles	particles	particles	particles	particles	
did not					
change	change	change	change	change	

Volume of sulphuric acid = 10 mL Room temperature = 31.0° C

Time: 20 minutes

Table 7: Stability of metal	ferrocyanides in sulphuric	acid at boiling temperature

MFcs (OC)	2.0 M	1.0 M	0.5 M	0.2 M	0.1 M
CuFc (Dark rust brown)	Insoluble dark rust brown particles turned black				
LaFc (White)	Soluble solution turned blue	Soluble solution blues	Slighty soluble solution light blue	Slighty soluble solution light blue	Slightly soluble solution turn blue
HgFc (Blue)	Soluble solution turned blue	Soluble solution turned blue	Soluble solution turned blue	Soluble solution turned blue	Soluble solution turned blue
MoFc (Green)	Insoluble green powder did not change supernatant clear				
AgFc (Light blue)	Insoluble blue (no change)				
TiFc (Forest green)	Insoluble forest green (no change)				
WFc (Dark green)	Insoluble particles remains dark greendark gre	Insoluble particles remains een dark gro	Insoluble particles remains een dark gre	Insoluble particles remains een dark gro	Insoluble particles remains cen
ZnFc (White)	Insoluble white particles turned light green				

OC = Original colour of metal ferrocyanides Time: 20 minutes

Amount of metal ferrocyanides = 20 mg Volume of sulphuric acids = 10 mL

Room temperature = 31.0° C

Table 8: Stability of metal ferrocyanides in nitric acid at room temperature

REVISTA	BOLI	/IANA	DE	<i>QUIMICA</i>	

ISSN 0250-5460 Rev. Bol. Quim. Paper edition ISSN 2078-3949 Rev. boliv. quim. Electronic edition Brij B. Tewari et al. REQ Vol. 36, No.1, pp. 19-39, 2019 MFcs 2.0 M 1.0 M 0.5 M

_

Received 03 19 2019 36(1); Jan./Apr. 2019 Accepted 04 25 2019 Published 04 30 2019; DOI: 10.34098/2078-3949.36.1.3

0.1 M

0.2 M

(OC)	2.0 M	1.0 M	0.5 M	0.2 M	0.1 M
CuFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
(Dark rust	dark rust brown	dark rust brown	dark rust brown dark rust brown		dark rust brown
brown)	particles did	particles did	particles did	particles did	particles did
,	not change	not change	not change	not change	not change
LaFc	Soluble	Soluble	soluble	soluble	soluble
White)	solution turned	solution faintly	solution	solution	solution
	green	greens	green	green	green
HgFc	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble
(Blue)	solution	solution	solution	solution	solution
	turned	turned	turned	turned	turned
	green	green	green	green	green
MoFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
(Green)	green powder	green powder	green powder	green powder	green powder
	did not change	did not change	did not change	did not change	did not change
	supernatant	supernatant	supernatant	supernatant	supernatant
	clear	clear	clear	clear	clear
AgFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
(Light blue)	light blue	light blue	light blue	light blue	light blue
	(no change)	(no change)	(no change)	(no change)	(no change)
TiFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
(Forest green)	night green	dark green	dark green	dark green	dark green
	dark green	(no change)	(no change)	(no change)	(no change)
WFc					
(Dark green)	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	particles	particles	particles	particles	particles
	remains	remains	remains	remains	remains
	dark greendark greer	n dark gree	n dark gree	n dark gree	n
ZnFc	x 1 1 1	x 1.1.1	x 1.11	x 1.11	x 1.11
(White)	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	white	white	white	white	white
	Particles	particles	particles	particles	particles
	Did not	did not	did not	did not	did not
	changed	changed	changed	changed	changed

OC = Original colour of metal ferrocyanides Time: 20 minutes

Room temperature = 31.0° C

Amount of metal ferrocyanides = 20 mg Volume of nitric acids = 10 mL

Table 9: Stability of metal ferrocyanides in nitric acid at boiling temperature

MFcs (OC)	2.0 M	1.0 M	0.5 M	0.2 M	0.1 M
CuFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
(Dark rust brown)	dark rust brown Particles turned				
olowily	Black	black	black	black	black
LaFc	Soluble	Soluble	soluble	soluble	soluble
(White)	solution turned	solution faintly	solution	solution	solution
	Brown	greens	green	green	green
HgFc	Soluble	Soluble	Soluble	Soluble	Soluble
(Blue)	solution	solution	solution	solution	solution
	turned	turned	turned	turned	turned
	green	green	green	green	green
MoFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
(Green)	green powder				

ISSN 0250-5460 ISSN 2078-3949	DLIVIANA DE Rev. Bol. Quim. P Rev. boliv. quim. al. RBQ Vol. 36, NO.	aper edition Electronic editi	A	ccepted 04 25 201	9 36(1); Jan./Apr. 2019 9 19; DOI: 10.34098/2078-3949.36
Dirj D. Icharl Co	did not change supernatant clear	did not change supernatant clear	did not change supernatant clear	did not change supernatant clear	did not change supernatant clear
AgFc (Light blue)	Insoluble light blue particles did not changenot chang	Insoluble light blue particles did genot changenot chang	Insoluble light blue particles did genot change	Insoluble light blue particles did	Insoluble light blue particles did
TiFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
(Forest green)	forest green Particles did not change not change	forest green Particles did genot changenot chang	forest green Particles did	forest green Particles did change	forest green Particles did
WFc	not enungenot enung	genet enangenet enang	50 1101	enunge	
(Dark green)	Insoluble particles remains dark greendark gree	Insoluble particles remains en dark gree	Insoluble particles remains	Insoluble particles remains k green dari	Insoluble particles remains k green
ZnFc	dark greendark gree	uurk groe	uur uur	k green dur	k green
(White)	Insoluble white particles turned light green	Insoluble white particles turned light green	Insoluble white particles turned light green	Insoluble white particles turned light green	Insoluble white particles turned light green

.1.3

 $OC = Original \ colour \ of \ metal \ ferrocyanides$ Time: 20 minutes Room temperature = $31.0^{\circ} \ C$ Amount of metal ferrocyanides = 20 mg Volume of nitric acids = 10 mL

Table 10: Stability of metal ferrocyanides in acetic acid at room temperature

MFcs (OC)	2.0 M	1.0 M	0.5 M	0.2 M	0.1 M
CuFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
(Dark rust	dark rust brown	dark rust brown	dark rust brown	dark rust brown	dark rust brown
brown)	Particles did not change	Particles did not change	Particles did not change	Particles did not change	Particles did not change
LaFc	Soluble	Soluble	soluble	soluble	soluble
(White)	white powder	white powder	white powder	white powder	white powder
	turned blue	turned blue	turned blue	turned blue	turned blue
HgFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
(Blue)	blue powder	blue powder	blue powder	blue powder	blue powder
	did not change	did not change	did not change	did not change	did not change
MoFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
(Green)	green powder	green powder	green powder	green powder	green powder
	turned deep	turned deep	turned deep	turned deep	turned deep
	blue	blue	blue	blue	blue
AgFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
(Light blue)	light blue-	light green -	light blue -light blu	ıe -light blue -	
	blue green	(no change)	(no change)	(no change)	(no change)
TiFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
(Forest green)	forest green	forest green	forest green	forest green	forest green
	Particles	Particles	Particles	Particles	Particles
	change to	change to	change to	change to	change to
	dark green	dark green	dark green	dark green	dark green
WFc					
(Dark green)	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	dark green	dark green	dark green	dark green	dark green
	particles	particles	particles	particles	particles
	remain	remain	remain	remain	remain
	unchanged	unchanged	unchanged	unchanged	unchanged
	Downloadable	from: Revista Bolivian	^{ia} 31 ^{de Q}	uímica. Volumen 36 N	Nº1 Año 2019

ISSN 0250-5460 Rev. Bol. Quim. Paper edition ISSN 2078-3949 Rev. boliv. quim. Electronic edition Brij B. Tewari et al. RBQ Vol. 36, No.1, pp. 19-39, 2019 ZnFc

Received 03 19 2019 36(1); Jan./Apr. 2019 Accepted 04 25 2019 Published 04 30 2019; DOI: 10.34098/2078-3949.36.1.3

(White)	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	white	white	white	white	white
	Particles	particles	particles	particles	particles
	Did not				
	changed	changed	changed	changed	changed

OC = Original colour of metal ferrocyanides Time: 20 minutes Amount of metal ferrocyanides = 20 mg Volume of acetic acids = 10 mL

Room temperature = 31.0° C

MFcs (OC)	2.0 M	1.0 M	0.5 M	0.2 M	0.1 M
CuFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
(Dark rust	dark rust brown	dark rust brown	dark rust brown	dark rust brown	dark rust brown
brown)	Particles turn	Particles turn	Particles turn	Particles turn	Particles turn
	black	black	black	black	black
LaFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
White)	white powder	white powder	white powder	white powder	white powder
	turned blue	turned blue	turned blue	turned blue	turned blue
HgFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
(Blue)	blue powder	blue powder	blue powder	blue powder	blue powder
	did not change	did not change	did not change	did not change	did not change
MoFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
(Green)	green powder	green powder	green powder	green powder	green powder
	turned deep blue	turned blue	turned blue	turned blue	turned blue
AgFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
(Light blue)	light blue	light blue	light blue	light blue	light blue
	(no change)	(no change)	(no change)	(no change)	(no change)
TiFc	Slightly insoluble	Slightly insoluble	Slightly insoluble	Slightly insoluble	Slightly insoluble
(Forest green)	forest green	forest green	forest green	forest green	forest green
	Particles	Particles	Particles	Particles	Particles
	change to	change to	change to	change to	change to
WFc	dark green	dark green	dark green	dark green	dark green
(Dark green)	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	dark green	dark green	dark green	dark green	dark green
	particles	particles	particles	particles	particles
	remain	remain	remain	remain	remain
	unchanged	unchanged	unchanged	unchanged	unchanged
ZnFc					
(White)	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	white	white	white	white	white
	Particles	particles	particles	particles	particles
	turned	turned	turned	turned	turned
	light green	light green	light green	light green	light green

Table 11: Stability of metal ferrocyanides in acetic acid at boiling temperature

OC = Original colour of metal ferrocyanidesTime: 20 minutes Room temperature = 31.0° C Amount of metal ferrocyanides = 20 mg Volume of acetic acids = 10 mL

volume of ace

Table 12: Stability of metal ferrocyanides in sodium hydroxide at room temperature

MFcs (OC)	2.0 M	1.0 M	0.5 M	0.2 M	0.1 M	
	Downloada	ble from: Revista Boliviana	32	de Química. Volumer	n 36 Nº1. Año 2019	

(White)	Soluble white particles	Slightly soluble white particles	Insoluble white particles	Insoluble white particles	Insoluble white particles
ZnFc					
(Dark green)	Insoluble dark green to black particles	Insoluble black particles	Insoluble black particles	Insoluble black particles	Insoluble black particles
WFc	not change	not change	not change	not change	not change
TiFc (Forest green)	Insoluble forest green particles did	Insoluble forest green particles did	Insoluble forest green particles did	Insoluble forest green particles did	Insoluble forest green particles did
AgFc (Light blue)	Insoluble light blue Particles change to gray	Insoluble no change in colour	Insoluble light blue Particles change to black	Insoluble light blue Particles change to black	Insoluble light blue Particles change to black
MoFc (Green)	Insoluble green particles turned deep green	Insoluble green particles turned deep green	Insoluble green particles turned deep green	Insoluble green particles turned deep green	Insoluble green particles turned deep green
HgFc (Blue)	Insoluble blue particles change to rust brown	Insoluble blue particles change to rust brown	Insoluble blue particles change to rust brown	Insoluble blue particles change to rust brown	Insoluble blue particles change to rust brown
LaFc (White)	Slightly soluble white particles turned blue	Slightly soluble white particles turned blue	Slightly soluble white particles turned blue	Slightly soluble white particles turned blue	Slightly soluble white particles turned blue
ISSN 0250-5460 1 ISSN 2078-3949 1	CLIVIANA DE Rev. Bol. Quim. F Rev. boliv. quim. al. RBQ vol. 36, NO Insoluble dark brown Particles change to green	Electronic edit:	. Accer	ted 04 25 2019	6(1); Jan./Apr. 2019 DOI: 10.34098/2078-3949.36.1.3 Insoluble dark brown Particles change to green

OC = Original colour of metal ferrocyanides Time: 20 minutes Amount of metal ferrocyanides = 20 mg Volume of sodium hydroxide = 10 mL

Room temperature = 31.0° C

Table 13: Stability of metal ferrocyanides in sodium hydroxide at boiling temperature

MFcs (OC)	2.0 M	1.0 M	0.5 M	0.2 M	0.1 M
CuFc (Dark rust brown)	Insoluble dark rust brown Particles turned green				
LaFc (White)	Insoluble white powder did not change				
HgFc (Blue)	Soluble blue powder turned brown	Soluble blue powder turned brown	Soluble blue powder turned green	Soluble blue powder turned green	Soluble blue powder turned green
MoFc (Green)	Soluble green powder turned brown	Soluble green powder turned brown	Soluble green powder turned brown	Soluble green powder turned brown	Soluble green powder turned blue
AgFc	Insoluble	Soluble	Soluble	Soluble	Soluble

ISSN 0250-5460 ISSN 2078-3949	COLIVIANA DE Rev. Bol. Quim. Rev. boliv. quim t al. Reg Vol. 36, M	Paper edition A. Electronic edi	Acco tion Pub	epted 04 25 2019	36(1); Jan./Apr. 2019 ; DOI: 10.34098/2078-3949.36.1.3
(Light blue)	light grayish peach-slate grey	Peach- black	Peach- black	Peach- black	Peach- black
TiFc (Forest green)	Insoluble forest green Particles did not change	Insoluble forest green Particles did not change	Insoluble forest green Particles did not change	Insoluble forest green Particles did not change	Insoluble forest green Particles did not change
WFc (Dark green)	Insoluble dark green particles did not change	Insoluble dark green particles did not change	Insoluble dark green particles did not change	Insoluble dark green particles did not change	Insoluble dark green particles did not change
ZnFc (White)	Soluble white Particles Dissolved	Soluble white particles dissolved	Soluble white particles dissolved	Soluble white particles dissolved	Soluble white particles dissolved

 $OC = Original \ colour \ of \ metal \ ferrocyanides$ Time: 20 minutes Room temperature = 31.0° C

Amount of metal ferrocyanides = 20 mg Volume of sodium hydroxides = 10 mL

Table 14: Stability of metal ferrocyanides in potassium hydroxide at room temperature

MFcs (OC)	2.0 M	1.0 M	0.5 M	0.2 M	0.1 M
CuFc (Dark rust brown)	Insoluble dark rust brown Particles turned green				
LaFc (White)	Insoluble white powder did not change				
HgFc (Blue)	Insoluble blue powder turned brown	Insoluble blue powder turned brown	Insoluble blue powder turned green	Insoluble blue powder turned green	Insoluble blue powder turned green
MoFc (Green)	Insoluble green powder Turned brown	Insoluble green powder turned brown	Insoluble green powder turned brown	Insoluble green powder turned brown	Insoluble green powder turned blue
AgFc (Light blue)	Insoluble light blue Particles did not change	Soluble light blue Particles did not change	Soluble light blue Particles did not change	Soluble light blue Particles did not change	Soluble light blue Particles did not change
TiFc (Forest green)	Insoluble forest green Particles did not change				
WFc (Dark green)	Insoluble dark green particles changed to dark greenish				
ZnFc	black	black	black	black	black

ISSN 0250-5460 Rev. Bol. Quim. Paper edition ISSN 2078-3949 Rev. boliv. quim. Electronic edition Brij B. Tewari et al. RBQ Vol. 36, No.1, pp. 19-39, 2019 Received 03 19 2019 36(1); Jan./Apr. 2019 Accepted 04 25 2019 Published 04 30 2019; DOI: 10.34098/2078-3949.36.1.3

(White)	Soluble	Soluble	Soluble	Soluble	Soluble
	white	white	white	white	white
	Particles	particles	particles	particles	particles
	Dissolved	dissolved	dissolved	dissolved	dissolved

Amount of metal ferrocyanides = 20 mg Volume of potassium hydroxides = 10 mL OC = Original colour of metal ferrocyanides Time: 20 minutes Room temperature = 31.0° C

Table 15: Stability of metal	ferrocyanides in	potassium hydroxide at boilin	g temperature

MFcs (OC)	2.0 M	1.0 M	0.5 M	0.2 M	0.1 M
CuFc (Dark rust brown)	Insoluble dark rust brown Particles turned green				
LaFc (White)	Insoluble white powder did not change				
HgFc (Blue)	Insoluble blue powder turned brown	Insoluble blue powder turned brown	Insoluble blue powder turned green	Insoluble blue powder turned green	Insoluble blue powder turned green
MoFc (Green)	Insoluble green powder turned brown	Insoluble green powder turned brown	Insoluble green powder turned brown	Insoluble green powder turned brown	Insoluble green powder turned blue
AgFc (Light blue)	Insoluble light blue Change to light grey	Soluble light blue change to light grey	Soluble light blue change to light grey	Soluble light blue change to light grey	Soluble light blue change to light grey
TiFc (Forest green)	Insoluble forest green colour did not change				
WFc (Dark green)	Insoluble dark green particles changed to dark greenish black				
ZnFc (White)	Soluble white Particles dissolved	Soluble white particles dissolved	Soluble white particles dissolved	Soluble white particles dissolved	Soluble white particles dissolved

 $OC = Original \ colour \ of \ metal \ ferrocyanides$ Room temperature = $31.0^{\circ} \ C$

Table 16: Stability of metal		

MFcs (OC)	2.0 M	1.0 M	0.5 M	0.2 M	0.1 M
CuFc (Dark rust	Insoluble dark rust brown				
	Downloadable	from: Revista Bolivian	a 35 de Q	uímica. Volumen 36 l	Nº1. Año 2019
	http://www.bo	livianchemistryjourna	l.org, http://www.scril	bd.com/bolivianjourna	alofchemistry

REVISTA BOLIVIANA DE QUÍMICAReceived 03 19 2019 36(1); Jan./Apr. 2019ISSN 0250-5460 Rev. Bol. Quim. Paper editionAccepted 04 25 2019ISSN 2078-3949 Rev. boliv. quim. Electronic edition
Brij B. Tewari et al. REQ Vol. 36, No.1, pp. 19-39, 2019Published 04 30 2019; DOI: 10.34098/2078-3949.36.1.3brown)Particles turnedParticles turnedParticles turned

brown)	Particles turned green				
LaFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
(White)	white powder				
	did not change				
HgFc	Soluble	Soluble	Soluble	Soluble	Soluble
(Blue)	blue powder				
	turned brown,	turned green,	turned green,	turned green,	turned green
	supernatant	supernatant	supernatant	supernatant	supernatant
	brown	brown	slightly green	slightly green	green
MoFc	Soluble	Soluble	Soluble	Soluble	Soluble
(Green)	green powder				
	turned brown,	turned brown	turned brown	turned brown	turned blue
	supernatant	supernatant	supernatant	supernatant	supernatant
	brown	brown	light brown	clear	clear
AgFc	Insoluble	Soluble	Soluble	Soluble	Soluble
(Light blue)	light blue				
	Particles	Particles	Particles	Particles	Particles
	did not				
	change	change	change	change	change
TiFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
(Forest green)	forest green				
	particles	particles	particles	particles	particles
	changed to				
	light yellow				
WFc					
(Dark green)	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	dark green				
	particles	particles	particles	particles	particles
	did not				
	change	change	change	change	change
ZnFc					
(White)	Soluble	Soluble	Soluble	Soluble	Soluble
	white	white	white	white	white
	Particles	particles	particles	particles	particles
	dissolved	dissolved	dissolved	dissolved	dissolved

OC = Original colour of metal ferrocyanides Time: 20 minutes

Room temperature = 31.0° C

Amount of metal ferrocyanides = 20 mgVolume of ammonium hydroxides = 10 mL

Table 17: Stability of metal ferrocyanides in ammonium hydroxide at boiling temperature

MFcs (OC)	2.0 M	1.0 M	0.5 M	0.2 M	0.1 M
CuFc (Dark rust brown)	Insoluble dark rust brown Particles turned green				
LaFc (White)	Insoluble white powder did not change				
HgFc (Blue)	Slightly soluble blue powder Turned gold brown	Slightly soluble blue powder turned green,	Slightly soluble blue powder turned green,	Soluble blue powder turned green,	Soluble blue powder turnedgreen
MoFc (Green)	Soluble green powder				

ISSN 0250-5460 Rev. Bol. Quim. Paper edition ISSN 2078-3949 Rev. boliv. quim. Electronic edition Brij B. Tewari et al. REQ Vol. 36, No.1, pp. 19-39, 2019 turned brown turned brown turned brown

turned blue

turned brown

AgFc	Partially soluble	Partially soluble	Insoluble	Insoluble	Insoluble
(Light blue)	light blue to brown	light blue	light blue	light blue	light blue
	Particles	Particles	Particles	Particles	
	change to	change to	change to	change to	
	light grey	light grey	light grey	light grey	
TiFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
(Forest green)	forest green	forest green	forest green	forest green	forest green
	particles	particles	particles	particles	particles
	changed to	changed to	changed to	changed to	changed to
	light yellow	light yellow	light yellow	light yellow	light yellow
WFc					
(Dark green)	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	dark green	dark green	dark green	dark green	dark green
	particles	particles	particles	particles	particles
	did not	did not	did not	did not	did not
	change	change	change	change	change
ZnFc					
(White)	Soluble	Soluble	Soluble	Soluble	Soluble
	white	white	white	white	white
	Particles	particles	particles	particles	particles
	Dissolved	dissolved	dissolved	dissolved	dissolved

OC = Original colour of metal ferrocyanides Time: 20 minutes

Amount of metal ferrocyanides = 20 mg

Room temperature = 31.0° C

Volume of ammonium hydroxides = 10 mL

Table 18: Stability of metal ferrocyanides in sea water and tap water (at boilling and room temperature)

MFcs	Tap water		Sea water	
(OC)	Room	Boiling	Room	Boiling
	temperature	temperature	temperature	temperature
CuFc	Insoluble	Insoluble	Insoluble	Insoluble
(dark rust	dark rust brown	dark rust brown	dark rust brown	dark rust brown
brown)	particles	particles	particles	blue particles
	did not changed	did not changed	did not changed	did not change
LaFc	Insoluble	Insoluble	Insoluble	Insoluble
(White)	white powder	white powder	white powder	white powder
	did not changed	did not changed	did not changed	did not change
HgFc	Insoluble	Insoluble	Insoluble	Insoluble
(Blue)	blue powder	blue powder	blue powder	blue powder
	did not changed	did not changed	did not changed	did not change
MoFc	Insoluble	Insoluble	Insoluble	Insoluble
(Green)	green powder	green powder	green powder	green powder
`	did not changed	did not changed	did not changed	did not change
AgFc	Insoluble light blue	Insoluble light blue	Insoluble light blue	Insoluble light
(Light blue)	particles	particles	particles	blue particles
	did not changed	did not changed	did not changed	did not change
TiFc	Insoluble forest	Insoluble forest	Insoluble forest	Insoluble fores
(Forest green)	green particles	green particles	green particles	green particles
	did not change	did not changed	did not changed	did not change
WFc	Insoluble dark green	Insoluble dark green	Insoluble dark green	Insoluble dark
(Dark green)	Particles	particles	particles	green particles
	did not changed	did not changed	did not changed	did not change

ISSN 0250-5460 Rev. Bol. Quim. Paper edition ISSN 2078-3949 Rev. boliv. quim. Electronic edition Brij B. Tewari et al. RBQ Vol. 36, No.1, pp. 19-39, 2019 Received 03 19 2019 36(1); Jan./Apr. 2019 Accepted 04 25 2019 Published 04 30 2019; DOI: 10.34098/2078-3949.36.1.3

ZnFc	Insoluble	Insoluble	Insoluble	Insoluble
(White)	white particles	white particles	white particles	white particles
	did not changed	did not changed	did not changed	did not change

MFcs	Original colour	12 hrs	24 hrs	36 hrs	48 hrs
CuFc	Dark rust brown	Reddish brown	brown	brown	brown
LaFc	White	White	No change	No change	No change
HgFc	Blue	Green	No change	No change	No change
MoFc	Green	Green	No change	No change	No change
AgFc	Light blue	Dark blue	Dark blue	Blackish blue	Blackish blue
TiFc	Forest green	Forest green	Forest green	Light forest green	Light forest green
WFc	Dark green	Dark green	Dark green	Dark green	Dark green
ZnFc	White	White	White	Dark white	Dark white

Amount of metal ferrocynides = 20 mg Distance of lamp from metal ferrocynides = 28 cm

Lamp = 250 Watts, Visible

Table 20: Effects of light (Ultra violet) on the stability of metal ferrocyanides

MFcs	Original colour	12 hrs	24 hrs	36 hrs	48 hrs
CuFc	Dark rust brown	No change	No change	No change	No change
LaFc	White	No change	No change	No change	No change
MoFc	Green	Green	No change	No change	No change
HgFc	Blue	Green	No change	No change	No change
AgFc	Light blue	Dark blue	Blackish blue	Blackish blue	Blackish blue
TiFc	Forest green	Forest green	Light forest green	Light forest green	Light forest green
WFc	Dark green	Dark green	Dark blue	Dark blue	Dark blue
ZnFc	White	No change	Dark white	Dark white	Darker white

Amount of metal ferrocynides = 20 mg

Lamp = 220 Watts, UV, Longwave (380 nm)

Distance of lamp from metal ferrocynides = 28 cm

REFERENCES

- 1. Kasting, J. F. 1993, Science, 259, 920.
- 2. Walker, J. C. G., Evolution of the Atmosphere, **1997**, *Mac Millan*, New York
- 3. Miller, S. L. Orgel, L. The Origins of Life on Earth, 1974, Prentice-Hall, Inc., New York.
- 4. Bernal J.D., The Physical Basis of Life, 1951, Routledge and Kegan Paul, London.

ISSN 0250-5460 Rev. Bol. Quim. Paper edition ISSN 2078-3949 Rev. boliv. quim. Electronic edition Received 03 19 2019 36(1); Jan./Apr. 2019 Accepted 04 25 2019 Published 04 30 2019; DOI: 10.34098/2078-3949.36.1.3

- Brij B. Tewari et al. RBQ Vol. 36, No.1, pp. 19-39, 2019
 5. Negron-Mendoza, A., Ramos-Bernol, S., The Role of Clays in the Origin of Life, In Seckbach, J., editor Origins: Genesis, Evolution and Diversity of Life, 2004, Kluwer Academic Publisher, Netherland, 183.
 - 6. Ponnamperuma, C., Shimoyama, A. Friebele, E. 1982, Origin of Life, 12, 9.
 - 7. Huang, W. Ferris, J. P. 2006, J. Am. Chem. Soc. 128, 8914.
 - 8. Zagorevskii, D.V., Alderslay, M. F., Ferris, J. P. 2006, J. Am. Soc. Mass Spectrometry, 17, 1265.
 - 9. Miyakawa, S., Ferris, J. P. 2006, J. Am. Chem. Soc. 125, 8202.
 - 10. Rapport, Z., The Chemistry of Cyano Group, Interscience / Wiley 1970, London.
 - 11. Sharpe, A. G. In the Chemistry of Cyano Complexes of Transition Metals, Academic Press, 1976, London.
 - 12. Tewari, B. B., Kamaluddin, 1998, Colloids and Surfaces A: Physicochem. Eng. Aspects, 131, 89.
 - 13. Tewari, B. B., 2000, Rev. Anal. Chem, 19, 491.
 - 14. Tewari, B. B., 2017, Curr. J. Appl. Sci. Technol., 24 (4), 1.
 - 15. Saraswat, I. P., Srivastava, S. K., Sharma, S. K., 1981, J. Inorg. Nucl. Chem., 43, 1653.
 - 16. Gill, J. S., Tandon, S. N., 1972, J. Inorg. Nucl. Chem., 24, 3885.
 - 17. Baetsle, L. H., Van Deyck, D., Hugs, D., 1965, J. Inorg. Nucl. Chem., 27, 683.
 - 18. Tewari, B. B., 2005, Cent. Eur. J. Chem., 3 (3),441.
 - 19. Tewari, B. B., 2005, Bull. Chem. Technol. Macedonia, 24 (2), 109.
 - 20. Kourim, V., Rais, J., Million, B., 1964, J. Inorg. Nucl. Chem., 26, 1111.
 - 21. Bastian, J., Lieser, K. H., 1967, J. Inorg. Nucl. Chem., 29, 827.
 - 22. Baetsle, L. H., Hugs, D.Van Deyck, D., 1966, J. Inorg. Nucl. Chem., 28, 2385.
 - 23. Hug, D., Baetsle, L. H., 1964, J. Inorg. Nucl. Chem., 26, 1329.
 - 24. Kraus, D., Nelson, F., Moore, G. E., 1955, J. Am. Chem. Soc., 77, 3972.
 - 25. Lucchesi, K. A., Glasson, W. A., 1956, J. Am. Chem. Soc., 78, 1347.